Skip to main content

Turing Model

Students today i am going to present this.....

Turing Model

The idea of a universal computational device was first described by Alan Turing in 1937. He proposed that all computation could be performed by a special kind of a machine, now called a Turing machine. He based the model on the actions that people perform when involved in computation. He abstracted these actions into a model for a computational machine that has really changed the world.
The Turing model is a better model for a general-purpose computer. This model adds an extra element to the specific computing machine: the program. A program is a set of instructions that tells the computer what to do with data. 

Universal Turing Machine
A universal Turing machine, a machine that can do any computation if the appropriate program is provided, was the first description of a modern computer. It can be proved that a very powerful computer and a universal Turing machine can compute the same thing. We need only provide the data and the program—the description of how to do the computation—to either machine. In fact, a universal Turing machine is capable of computing anything that is computable.
Computers built on the Turing universal machine store data in their memory. Around 1944–1945, John von Neumann proposed that, since program and data are logically the same, programs should also be stored in the memory of a computer.
Actually these all notes are collected from the book ....i mentioned below...

Comments

Post a Comment

Popular posts from this blog

DESIGN TM FOR {a^n b^n c^n | n>=1}

Concept:- General_idea: click_me L={a^n b^n c^n | n>=1} w={abc,aabbcc,aaabbbccc,....} a a a b b b c c c  X a a Y b b Z c c X X a Y Y b Z Z c Step_1: Replace a by X and go right side. TM tape can move any side. It has infinite memory in both side. And it can remember previous states details. Step_2: Replace b by Y and go right side of tape. Step_3: Replace c by Z and turn left till X .  Step_4: After seeing X(capital X) replace next a by X and do same loop. Step_5: X portions finished. Step_6: Move to Y states. Denote it for one move first and after that notate self loops. Goto final state Z in self loop. Finally stop turing machine. Success. Next step: How to add self loop states? Ok listen me... For that we are taking two steps X a a Y b b Z c c X X a Y Y b Z Z c  Just understand in between symbols. And make it as self loops. If any doubt please post comments..I can explain it. Small editing...This one...

Design a TM(Turing Machine) , L={a^nb^n | n>=1}

Design View: By JFLAP Software Concept :  aaabbb Case1: XaaYbb Case2:XXaYYb Case3:XXXYYY Case 1: Read first 'a' and replace it by 'X' Then read first 'b' and replace it as 'Y' What i am doing is .....Meaning of a^n b^n is " Equal no: of a's must followed by equal no: of b's " In Case 1 : I read first 'a' and First 'b'. Before reading Second 'b'....Should read Second 'a' .... Then continue the steps.....Finally 'B' reads....Machine will stop... Transitions concept will continue ......

Counter Machines

Counter machine has the same structure as the multi-stack machine  but in place of each stack is a counter. Counters hold any non-negative integer,but we can only distinguish between zero and nonzero counters. That's the move of the counter machine depends on its state,input symbol and which if any of the counters are zero. In one move,the counter machine can a)change state b)Add or subtract 1 from any of its counters,independently. However a counter is not allowed to become negative,so it cant subtract from a counter that is currently 0. Counter Machine may also be regarded as a restricted multi-stack machine. The restrictions are as follows, a)There are only two stack symbols,which we shall refer to as Z0(the bottom of stack marker) and X. b)Z0 is initially on each stack. c)We may replace Z0 only by a string of the form X^iz0 for some    i >=0. d)We may replace X only by X^i for some i >= 0. That's Z0 appears   only on the bottom of each stack and...